Loading...
Searching...
No Matches
PABLO_example_00007.cpp

Parallel 2D adaptive mesh refinement (AMR) with data using PABLO.

Parallel 2D adaptive mesh refinement (AMR) with data using PABLO The example is the parallel version of PABLO_example_00004.

Here the main focus is on the load-balance of both grid and data. The grid is refined several times together with the data and their inheritance follows the same rules like in example 00004. Until the last refinement no parallel paradigm is in action: every process owns the entire grid.

After this refinement, the load-balance with data is introduced, giving as result a parallel distribution of grid and data.

Even a constant vector of weight is used, in order to show that the loadBalance can be performed by using a weight function for each cell.

The user data communication interfaces are based on the Couriously Recurrent Template Pattern. The user has to implement a specification of the interface by writing a derived class. In the files PABLO_userDataLB.hpp and PABLO_userDataLB.tpp an example of this specification is given in the case of user data stored in a POD container similar to the STL vector.

The class in PABLO_userDataLB.hpp is an example of user specification of the load blance data communication interface based on the Curiously Recurrent Template Pattern. The user has to implement his interface class(es) in order to define how his data have to be written and read in the communication buffer. These classes have to be derived from the template base class bitpit::DataLBInterface using as template argument value the derived class. Like this,

template <class D>
class UserDataLB : public bitpit::DataLBInterface<UserDataLB<D> >
Base class for data communications.

The choice of the members of the class is completely up to the user and they have to be useful to access both internal and ghost data container. In the example user data datatype is given as template parameter in order to pass any container similar to the STL vector.

In any case, the user must at least implement all the methods reported in this example:

UserDataLB(Data& data_, Data& ghostdata_) the constructor method: this method has to be called by the user in his application code. The user is free to implement his constructors as he wants, but he must guarantee the access to the internal and ghost data.

template<class D>
inline UserDataLB<D>::UserDataLB(Data& data_, Data& ghostdata_) : data(data_), ghostdata(ghostdata_){}

In the code of this example application, pay attention to the use of the interface

UserDataLB<vector<double> > data_lb(weight,weightGhost);
pablo7.loadBalance(data_lb, &weight);

To run: ./PABLO_example_00007
To see the result visit: PABLO website

/*---------------------------------------------------------------------------*\
*
* bitpit
*
* Copyright (C) 2015-2021 OPTIMAD engineering Srl
*
* -------------------------------------------------------------------------
* License
* This file is part of bitpit.
*
* bitpit is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License v3 (LGPL)
* as published by the Free Software Foundation.
*
* bitpit is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with bitpit. If not, see <http://www.gnu.org/licenses/>.
*
\*---------------------------------------------------------------------------*/
#include "bitpit_PABLO.hpp"
#if BITPIT_ENABLE_MPI==1
#include "PABLO_userDataComm.hpp"
#include "PABLO_userDataLB.hpp"
#endif
using namespace std;
using namespace bitpit;
// =================================================================================== //
// =================================================================================== //
#if BITPIT_ENABLE_MPI==1
#include <mpi.h>
#endif
#include "bitpit_PABLO.hpp"
void run()
{
int iter = 0;
PabloUniform pablo7(2);
int idx = 0;
pablo7.setBalance(idx,false);
for (iter=1; iter<6; iter++){
}
double xc, yc;
xc = yc = 0.5;
double radius = 0.25;
uint32_t nocts = pablo7.getNumOctants();
uint32_t nghosts = pablo7.getNumGhosts();
vector<double> oct_data(nocts, 0.0), ghost_data(nghosts, 0.0);
for (unsigned int i=0; i<nocts; i++){
vector<array<double,3> > nodes = pablo7.getNodes(i);
array<double,3> center = pablo7.getCenter(i);
for (int j=0; j<4; j++){
double x = nodes[j][0];
double y = nodes[j][1];
if ((pow((x-xc),2.0)+pow((y-yc),2.0) <= pow(radius,2.0))){
oct_data[i] = (pow((center[0]-xc),2.0)+pow((center[1]-yc),2.0));
}
}
}
iter = 0;
pablo7.writeTest("pablo00007_iter"+to_string(static_cast<unsigned long long>(iter)), oct_data);
int start = 1;
vector<double> weight(nocts, 1.0),weightGhost;
for (iter=start; iter<start+2; iter++){
for (unsigned int i=0; i<nocts; i++){
vector<array<double,3> > nodes = pablo7.getNodes(i);
array<double,3> center = pablo7.getCenter(i);
for (int j=0; j<4; j++){
weight[i] = 2.0;
double x = nodes[j][0];
double y = nodes[j][1];
if ((pow((x-xc),2.0)+pow((y-yc),2.0) <= pow(radius,2.0))){
if (center[0]<=xc){
pablo7.setMarker(i,1);
weight[i] = 1.0;
}
else{
pablo7.setMarker(i,-1);
weight[i] = 1.0;
}
}
}
}
vector<double> oct_data_new;
vector<double> weight_new;
vector<uint32_t> mapper;
vector<bool> isghost;
pablo7.adapt(true);
nocts = pablo7.getNumOctants();
oct_data_new.resize(nocts, 0.0);
weight_new.resize(nocts,0.0);
for (uint32_t i=0; i<nocts; i++){
pablo7.getMapping(i, mapper, isghost);
if (pablo7.getIsNewC(i)){
for (int j=0; j<4; j++){
oct_data_new[i] += oct_data[mapper[j]]/4;
weight_new[i] += weight[mapper[j]];
}
}
else if (pablo7.getIsNewR(i)){
oct_data_new[i] += oct_data[mapper[0]];
weight_new[i] += weight[mapper[0]];
}
else{
oct_data_new[i] += oct_data[mapper[0]];
weight_new[i] += weight[mapper[0]];
}
}
pablo7.writeTest("pablo00007_iter"+to_string(static_cast<unsigned long long>(iter)), oct_data_new);
oct_data = oct_data_new;
weight = weight_new;
}
#if BITPIT_ENABLE_MPI==1
UserDataLB<vector<double> > data_lb(weight,weightGhost);
pablo7.loadBalance(data_lb, &weight);
#endif
double tot = 0.0;
for (unsigned int i=0; i<weight.size(); i++){
tot += weight[i];
}
pablo7.writeTest("pablo00007_iter"+to_string(static_cast<unsigned long long>(iter)), weight);
}
int main(int argc, char *argv[])
{
#if BITPIT_ENABLE_MPI==1
MPI_Init(&argc,&argv);
#else
#endif
int nProcs;
int rank;
#if BITPIT_ENABLE_MPI==1
MPI_Comm_size(MPI_COMM_WORLD, &nProcs);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
#else
nProcs = 1;
rank = 0;
#endif
// Initialize the logger
log::manager().initialize(log::MODE_SEPARATE, false, nProcs, rank);
log::cout() << log::fileVerbosity(log::LEVEL_INFO);
log::cout() << log::disableConsole();
// Run the example
try {
run();
} catch (const std::exception &exception) {
log::cout() << exception.what();
exit(1);
}
#if BITPIT_ENABLE_MPI==1
MPI_Finalize();
#endif
}
PABLO Uniform is an example of user class derived from ParaTree to map ParaTree in a uniform (square/...
void getNodes(uint32_t idx, darr3vector &nodes) const
void writeTest(const std::string &filename, dvector data)
void getCenter(uint32_t idx, darray3 &center) const
void setMarker(uint32_t idx, int8_t marker)
uint32_t getNumOctants() const
bool adapt(bool mapper_flag=false)
void getMapping(uint32_t idx, u32vector &mapper, bvector &isghost) const
void loadBalance(const dvector *weight=NULL)
bool adaptGlobalRefine(bool mapper_flag=false)
uint32_t getNumGhosts() const
void updateConnectivity()
bool getIsNewC(uint32_t idx) const
void setBalance(uint32_t idx, bool balance)
bool getIsNewR(uint32_t idx) const
std::array< T, d > pow(std::array< T, d > &x, double p)
#define BITPIT_UNUSED(variable)
Definition compiler.hpp:63
--- layout: doxygen_footer ---